175 research outputs found

    Be Stars: Rapidly Rotating Pulsators

    Full text link
    I will show that Be stars are, without exception, a class of rapidly rotating stars, which are in the majority of cases pulsating stars as well, while none of them does possess a large scale (i.e. with significant dipolar contribution) magnetic field.Comment: Review talk given at "XX Stellar Pulsation Conference Series: Impact of new instrumentation and new insights in stellar pulsations", Granada, 5-9 September 2011, in press in AIP Conf. Se

    Dynamical mass of the O-type supergiant in Zeta Orionis A

    Full text link
    A close companion of Zeta Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be associated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry and spectroscopy then yields the stellar masses and the distance to the binary star. The resulting masses for components Aa of 14.0 solar masses and Ab of 7.4 solar masses are low compared to theoretical expectations, with a distance of 294 pc which is smaller than a photometric distance estimate of 387 pc based on the spectral type B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the mass of the secondary component Ab of 14 solar masses would agree with classifying a star of type B0.5IV. It is fainter than the primary by about 2.2 magnitudes in the visual. The primary mass is then determined to be 33 solar masses

    Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71

    Get PDF
    To better understand the LBV phenomenon, we analyze multi-epoch and multi-wavelength spectra and photometry of R71. Pre-outburst spectra are analyzed with the radiative transfer code CMFGEN to determine the star's fundamental stellar parameters. During quiescence, R71 has an effective temperature of Teff=15 500 KT_\mathrm{{eff}} = 15\,500~K and a luminosity of log(L∗/L⊙)(L_*/L_{\odot}) = 5.78 and is thus a classical LBV, but at the lower luminosity end of this group. We determine its mass-loss rate to 4.0×10−6 M⊙ 4.0 \times 10^{-6}~M_{\odot}~yr−1^{-1}. We present R71's spectral energy distribution from the near-ultraviolet to the mid-infrared during its present outburst. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. Semi-regular oscillatory variability in the star's light curve is observed during the current outburst. Absorption lines develop a second blue component on a timescale twice that length. The variability may consist of one (quasi-)periodic component with P ~ 425/850 d with additional variations superimposed. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&

    VLTI/PIONIER images the Achernar disk swell

    Full text link
    Context. The mechanism of disk formation around fast-rotating Be stars is not well understood. In particular, it is not clear which mechanisms operate, in addition to fast rotation, to produce the observed variable ejection of matter. The star Achernar is a privileged laboratory to probe these additional mechanisms because it is close, presents B-Be phase variations on timescales ranging from 6 yr to 15 yr, a companion star was discovered around it, and probably presents a polar wind or jet. Aims. Despite all these previous studies, the disk around Achernar was never directly imaged. Therefore we seek to produce an image of the photosphere and close environment of the star. Methods. We used infrared long-baseline interferometry with the PIONIER/VLTI instrument to produce reconstructed images of the photosphere and close environment of the star over four years of observations. To study the disk formation, we compared the observations and reconstructed images to previously computed models of both the stellar photosphere alone (normal B phase) and the star presenting a circumstellar disk (Be phase). Results. The observations taken in 2011 and 2012, during the quiescent phase of Achernar, do not exhibit a disk at the detection limit of the instrument. In 2014, on the other hand, a disk was already formed and our reconstructed image reveals an extended H-band continuum excess flux. Our results from interferometric imaging are also supported by several H-alpha line profiles showing that Achernar started an emission-line phase sometime in the beginning of 2013. The analysis of our reconstructed images shows that the 2014 near-IR flux extends to 1.7 - 2.3 equatorial radii. Our model-independent size estimation of the H-band continuum contribution is compatible with the presence of a circumstellar disk, which is in good agreement with predictions from Be-disk models
    • …
    corecore